期刊论文详细信息
Geothermal Energy
Heat flow density estimates in the Upper Rhine Graben using laboratory measurements of thermal conductivity on sedimentary rocks
Albert Genter1  Régis Hehn1  Vincent Maurer1  Alexandre Richard1  Patrick Baud2  Michael J. Heap2  Alexandra R. L. Kushnir2  Coralie Aichholzer3  Pauline Harlé3  Philippe Duringer3 
[1] ES-Géothermie;Géophysique Expérimentale, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516, CNRS-Université de Strasbourg EOST;Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516, CNRS-Université de Strasbourg EOST;
关键词: Heat flow density;    Upper Rhine Graben;    Thermal conductivity;    Saturation;    Temperature;    Sedimentary rocks;   
DOI  :  10.1186/s40517-019-0154-3
来源: DOAJ
【 摘 要 】

Abstract The Upper Rhine Graben (URG) has been extensively studied for geothermal exploitation over the past decades. Yet, the thermal conductivity of the sedimentary cover is still poorly constrained, limiting our ability to provide robust heat flow density estimates. To improve our understanding of heat flow density in the URG, we present a new large thermal conductivity database for sedimentary rocks collected at outcrops in the area including measurements on (1) dry rocks at ambient temperature (dry); (2) dry rocks at high temperature (hot) and (3) water-saturated rocks at ambient temperature (wet). These measurements, covering the various lithologies composing the sedimentary sequence, are associated with equilibrium-temperature profiles measured in the Soultz-sous-Forêts wells and in the GRT-1 borehole (Rittershoffen) (all in France). Heat flow density values considering the various experimental thermal conductivity conditions were obtained for different depth intervals in the wells along with average values for the whole boreholes. The results agree with the previous heat flow density estimates based on dry rocks but more importantly highlight that accounting for the effect of temperature and water saturation of the formations is crucial to providing accurate heat flow density estimates in a sedimentary basin. For Soultz-sous-Forêts, we calculate average conductive heat flow density to be 127 mW/m2 when considering hot rocks and 184 mW/m2 for wet rocks. Heat flow density in the GRT-1 well is estimated at 109 and 164 mW/m2 for hot and wet rocks, respectively. Results from the Rittershoffen well suggest that heat flow density is nearly constant with depth, contrary to the observations for the Soultz-sous-Forêts site. Our results show a positive heat flow density anomaly in the Jurassic formations, which could be explained by a combined effect of a higher radiogenic heat production in the Jurassic sediments and thermal disturbance caused by the presence of the major faults close to the Soultz-sous-Forêts geothermal site. Although additional data are required to improve these estimates and our understanding of the thermal processes, we consider the heat flow densities estimated herein as the most reliable currently available for the URG.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次