期刊论文详细信息
IEEE Access
Power Transformer Fault Diagnosis Based on DGA Using a Convolutional Neural Network With Noise in Measurements
Saleh Ibrahim1  Ibrahim B. M. Taha1  Diaa-Eldin A. Mansour2 
[1] Department of Electrical Engineering, College of Engineering, Taif University, Taif, Saudi Arabia;Electrical Power and Machines Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt;
关键词: Power transformer;    fault diagnosis;    convolution neural network;    noises in measurements;   
DOI  :  10.1109/ACCESS.2021.3102415
来源: DOAJ
【 摘 要 】

Fault type diagnosis is a very important tool to maintain the continuity of power transformer operation. Dissolved gas analysis (DGA) is one of the most effective and widely used techniques for predicting the power transformer fault types. In this paper, a convolutional neural network (CNN) model is proposed based on the DGA approach to accurately predict transformer fault types under different noise levels in measurements. The proposed model is applied with three categories of input ratios: conventional ratios (Rogers’4 ratios, IEC 60599 ratios, Duval triangle ratios), new ratios (five gas percentage ratios and new form six ratios), and hybrid ratios (conventional and new ratios together). The proposed model is trained and tested based on 589 dataset samples collected from electrical utilities and literature with varying noise levels up to ±20%. The results indicate that the CNN model with hybrid input ratios has superior prediction accuracy. The high accuracy of the proposed model is validated in comparison with conventional and recently published AI approaches. The proposed model is implemented based on MATLAB/toolbox 2020b.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次