期刊论文详细信息
Journal of Inequalities and Applications
A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem
G. J. O. Jameson1 
[1] Department of Mathematics and Statistics, Lancaster University;
关键词: Harmonic sum;    Euler’s constant;    Digamma function;    Divisor problem;   
DOI  :  10.1186/s13660-019-2104-9
来源: DOAJ
【 摘 要 】

Abstract Let Hn=∑r=1n1/r $H_{n} = \sum_{r=1}^{n} 1/r$ and Hn(x)=∑r=1n1/(r+x) $H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x) $\psi(x)$ denote the digamma function. It is shown that Hn(x)+ψ(x+1) $H_{n}(x) + \psi(x+1)$ is approximated by 12logf(n+x) $\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13 $f(x) = x^{2} + x + \frac{1}{3}$, with error term of order (n+x)−5 $(n+x)^{-5}$. The cases x=0 $x = 0$ and n=0 $n = 0$ equate to estimates for Hn−γ $H_{n} - \gamma $ and ψ(x+1) $\psi(x+1)$ itself. The result is applied to determine exact bounds for a remainder term occurring in the Dirichlet divisor problem.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次