Remote Sensing | |
Atmospheric Corrections for Altimetry Studies overInland Water | |
Alexandra L. Nunes1  Remko Scharroo2  M. Joana Fernandes3  Clara Lázaro3  | |
[1] Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, 4050-123 Porto, Portugal;European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT),64295 Darmstadt, Germany;Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; | |
关键词: satellite altimetry; inland water; atmospheric corrections; dry tropospheric correction; wet tropospheric correction; ionospheric correction; | |
DOI : 10.3390/rs6064952 | |
来源: DOAJ |
【 摘 要 】
Originally designed for applications over the ocean, satellite altimetry has been proven to be a useful tool for hydrologic studies. Altimeter products, mainly conceived for oceanographic studies, often fail to provide atmospheric corrections suitable for inland water studies. The focus of this paper is the analysis of the main issues related with the atmospheric corrections that need to be applied to the altimeter range to get precise water level heights. Using the corrections provided on the Radar Altimeter Database System, the main errors present in the dry and wet tropospheric corrections and in the ionospheric correction of the various satellites are reported. It has been shown that the model-based tropospheric corrections are not modeled properly and in a consistent way in the various altimetric products. While over the ocean, the dry tropospheric correction (DTC) is one of the most precise range corrections, in some of the present altimeter products, it is the correction with the largest errors over continental water regions, causing large biases of several decimeters, and along-track interpolation errors up to several centimeters, both with small temporal variations. The wet tropospheric correction (WTC) from the on-board microwave radiometers is hampered by the contamination on the radiometer measurements of the surrounding lands, making it usable only in the central parts of large lakes. In addition, the WTC from atmospheric models may also have large errors when it is provided at sea level instead of surface height. These errors cannot be corrected by the user, since no accurate expression exists for the height variation of the WTC. Alternative and accurate corrections can be computed from in situ data, e.g., DTC from surface pressure at barometric stations and WTC from Global Navigation Satellite System permanent stations. The latter approach is particularly favorable for small lakes and reservoirs, where GNSS-derived WTC at a single location can be representative of the whole lake. For non-timely critical studies, for consistency and stability, model-derived tropospheric corrections from European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis ERA Interim, properly computed at surface height, are recommended. The instrument-based dual-frequency ionospheric correction may have errors related with the land contamination in the Ku and C/S bands, making it more suitable to use a model-based correction. The most suitable model-based ionospheric correction is the Jet Propulsion Laboratory (JPL) global ionosphere map (GIM) model, available after 1998, properly scaled to the altimeter height. Most altimeter products provide the GIM correction unreduced for the total electron content extending above the altitude of these satellites, thus overestimating the ionospheric correction by about 8%. Prior to 1998, the NIC09 (NOAA Ionosphere Climatology 2009) climatology provides the best accuracy.
【 授权许可】
Unknown