期刊论文详细信息
Biomedicine & Pharmacotherapy
Structural stability of novel composite heart valve prostheses - Fatigue and wear performance
Qianqian Wu1  Linzhi Wu2  Han Zhou3 
[1] National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, Heilongjiang, 150008, PR China;Corresponding author.;National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, Heilongjiang, 150008, PR China;
关键词: Heart valve;    Valve prosthesis;    Composite;    Fabric;    Fatigue;   
DOI  :  
来源: DOAJ
【 摘 要 】

Heart valve replacement is a very effective method to treat severe valvular stenosis or valvular insufficiency. The valve can be divided into the mechanical valve and biological valve according to the main materials of the valve leaflets. The former has good durability, but the patients need to take anticoagulants all their lives, otherwise, thrombosis will occur; the latter has good blood compatibility, and only 3–6 months of postoperative anticoagulation is required, but its durability is lower than the former. Compared with a traditional valve used materials, the fabric composite valve leaflets have both mechanical valve and biological valve advantages, i.e. it can have both good blood compatibility and excellent fatigue resistance. This material is comprised of the internal fabric layer and bilateral external polyurethane layers jointed with adhesive, and it can adjust the flexibility, wear-resistance and fatigue resistance of the valve leaflet through adjusting the thickness of the outer polyurethane protective layer, the weaving method, the fiber diameter and the surface density of the inner ultra-high molecular weight polyethylene (UHMWPE) fabric. In this article, we tested the long-term durability of a fabric composite with its property close to the valve leaflet made of bovine pericardium, to evaluate the material performance loss under long-term fatigue and the wear degree of this material with different polyurethane layer thicknesses. As many as two hundred million cycles of fatigue test and the hydrodynamic performance test before and after the fatigue test proved that the material could withstand a service life of at least five years without structural failure or functional degradation. According to the SEM images after the experiment, it can be predicted that this material can achieve a longer fatigue life.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次