期刊论文详细信息
| Rendiconti di Matematica e delle Sue Applicazioni | |
| Interface dynamics and Stefan problem from a microscopic conservative model | |
| B. Rüdiger1  P. Buttà2  L. Bertini3  | |
| [1] Universitaet Bochum;Università dell’Aquila;Università di Roma La Sapienza; | |
| 关键词: field models; stefan problem; hydrodynamic limit; | |
| DOI : | |
| 来源: DOAJ | |
【 摘 要 】
We consider a stochastic spin system coupled to a linear diffusion process. The coupling is such that there is a locally conserved quantity. The equilibrium states are the corresponding canonical Gibbs measures. We prove that, under a diffusive scaling limit, the macroscopic density of the conserved quantity solves a non–linear diffusion equation. For certain values of the parameters a phase transition occurs; in this case the macroscopic equation degenerates and is the weak formulation of the two phases Stefan problem.
【 授权许可】
Unknown