Materials | |
Effect of Aging and Cooling Path on the Super β-Transus Heat-Treated Ti-6Al-4V Alloy Produced via Electron Beam Melting (EBM) | |
Paolo Fino1  Alberta Aversa1  Emilio Bassini1  Alessandro Carrozza1  Federica Bondioli1  Giulio Marchese1  Daniele Ugues1  Sara Biamino1  Abdollah Saboori2  | |
[1] Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy;Department of Management and Production Engineering, Politecnico Di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy; | |
关键词: additive manufacturing; electron beam melting; titanium; heat treatments; microstructure; mechanical properties; | |
DOI : 10.3390/ma15124067 | |
来源: DOAJ |
【 摘 要 】
This work focuses on the effect of different heat treatments on the Ti-6Al-4V alloy processed by means of electron beam melting (EBM). Super β-transus annealing was conducted at 1050 °C for 1 h on Ti-6Al-4V samples, considering two different cooling paths (furnace cooling and water quenching). This heat treatment induces microstructural recrystallization, thus reducing the anisotropy generated by the EBM process (columnar prior-β grains). Subsequently, the annealed furnace-cooled and water-quenched samples were aged at 540 °C for 4 h. The results showed the influence of the aging treatment on the microstructure and the mechanical properties of the annealed EBM-produced Ti-6Al-4V. A comparison with the traditional processed heat-treated material was also conducted. In the furnace-cooled specimens consisting of lamellar α+β, the aging treatment improved ductility and strength by inducing microstructural thickening of the α laths and reducing the β fraction. The effect of the aging treatment was also more marked in the water-quenched samples, characterized by high tensile strengths but limited ductility due to the presence of martensite. In fact, the aging treatment was effective in the recovery of the ductility loss, maintaining high tensile strength properties due to the variation in the relative number of α/α’ interfaces resulting from α’ decomposition. This study, therefore, offers an in-depth investigation of the potential beneficial effects of the aging treatment on the microstructure and mechanical properties of the EBM-processed super β-transus heat-treated Ti-6Al-4V alloy under different cooling conditions.
【 授权许可】
Unknown