期刊论文详细信息
Micromachines
Combined Ammonia and Electron Processing of a Carbon-Rich Ruthenium Nanomaterial Fabricated by Electron-Induced Deposition
Petra Martinović1  Markus Rohdenburg1  Petra Swiderek1  CharleneJ. Lobo2  JohannesE. Fröch2 
[1] Institute for Applied and Physical Chemistry (IAPC), Fachbereich 2 (Chemie/Biologie), University of Bremen, Leobener Str. 5 (NW2), 28359 Bremen, Germany;School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
关键词: focused electron beam-induced deposition;    deposit post-processing;    ammonia;    Ru deposition;    carbon nitride;   
DOI  :  10.3390/mi11080769
来源: DOAJ
【 摘 要 】

Ammonia (NH3)-assisted purification of deposits fabricated by focused electron beam-induced deposition (FEBID) has recently been proven successful for the removal of halide contaminations. Herein, we demonstrate the impact of combined NH3 and electron processing on FEBID deposits containing hydrocarbon contaminations that stem from anionic cyclopentadienyl-type ligands. For this purpose, we performed FEBID using bis(ethylcyclopentadienyl)ruthenium(II) as the precursor and subjected the resulting deposits to NH3 and electron processing, both in an environmental scanning electron microscope (ESEM) and in a surface science study under ultrahigh vacuum (UHV) conditions. The results provide evidence that nitrogen from NH3 is incorporated into the carbon content of the deposits which results in a covalent nitride material. This approach opens a perspective to combine the promising properties of carbon nitrides with respect to photocatalysis or nanosensing with the unique 3D nanoprinting capabilities of FEBID, enabling access to a novel class of tailored nanodevices.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次