Sensors | |
A Red-Emitting, Multidimensional Sensor for the Simultaneous Cellular Imaging of Biothiols and Phosphate Ions | |
Rafael Salto1  Maria D. Giron1  Juan M. Cuerva2  Jose M. Paredes3  Delia Miguel3  Pilar Herrero-Foncubierta3  Angel Orte3  | |
[1] Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain;Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain;Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain; | |
关键词: dual probes; fluorescent sensors; fluorescence lifetime imaging; FLIM; cellular stress; photoreceptor cells; | |
DOI : 10.3390/s18010161 | |
来源: DOAJ |
【 摘 要 】
The development of new fluorescent probes for cellular imaging is currently a very active field because of the large potential in understanding cell physiology, especially targeting anomalous behaviours due to disease. In particular, red-emitting dyes are keenly sought, as the light in this spectral region presents lower interferences and a deeper depth of penetration in tissues. In this work, we have synthesized a red-emitting, dual probe for the multiplexed intracellular detection of biothiols and phosphate ions. We have prepared a fluorogenic construct involving a silicon-substituted fluorescein for red emission. The fluorogenic reaction is selectively started by the presence of biothiols. In addition, the released fluorescent moiety undergoes an excited-state proton transfer reaction promoted by the presence of phosphate ions, which modulates its fluorescence lifetime, τ, with the total phosphate concentration. Therefore, in a multidimensional approach, the intracellular levels of biothiols and phosphate can be detected simultaneously using a single fluorophore and with spectral clearing of cell autofluorescence interferences. We have applied this concept to different cell lines, including photoreceptor cells, whose levels of biothiols are importantly altered by light irradiation and other oxidants.
【 授权许可】
Unknown