Drones | |
Multirotor Drone Aerodynamic Interaction Investigation | |
Dhwanil Shukla1  Narayanan Komerath1  | |
[1] School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; | |
关键词: drone; UAV; multirotor; aerodynamics; PIV; wake interactions; low Reynolds number; performance; | |
DOI : 10.3390/drones2040043 | |
来源: DOAJ |
【 摘 要 】
Aerodynamic interactions between rotors are important factors affecting the performance of in-plane multirotor Unmanned Air Vehicles (UAVs) or drones, which are the majority of small size UAVs (or mini-drones). Optimal design requires knowledge of the flow features. The low Reynolds number of many UAV rotors raises the question of how these features differ from those expected by traditional analytical methods for rotorcraft. Aerodynamics of a set of side-by-side rotors in hover over a range of rotor separation and Reynolds number is studied using high-speed Stereo Particle Image Velocimetry (SPIV) and performance measurements. The instantaneous and time-averaged SPIV data presented here indicate an increase in inter-rotor wake interactions with decrease in rotor spacing and Reynolds number. A dip in rotor efficiency at small rotor spacing at low Reynolds number is observed through thrust and torque measurements. The basic components of in-plane multirotor wake and velocity profiles are identified and discussed to help generalize the findings to a wide range of drones. However, the data provide confidence in traditional analysis tools, with small modifications.
【 授权许可】
Unknown