Opuscula Mathematica | |
Characterizations of rectangular (para)-unitary rational functions | |
Izchak Lewkowicz1  Palle Jorgensen2  Daniel Alpay3  | |
[1] Department of Electrical Engineering, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel;Department of Mathematics, 14 MLH, The University of Iowa, Iowa City, IA 52242-1419, USA;Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel; | |
关键词: isometry; coisometry; lossless; all-pass; realization; gramians; matrix fraction description; Blaschke-Potapov product; | |
DOI : http://dx.doi.org/10.7494/OpMath.2016.36.6.695 | |
来源: DOAJ |
【 摘 要 】
We here present three characterizations of not necessarily causal, rational functions which are (co)-isometric on the unit circle: (i) through the realization matrix of Schur stable systems, (ii) the Blaschke-Potapov product, which is then employed to introduce an easy-to-use description of all these functions with dimensions and McMillan degree as parameters, (iii) through the (not necessarily reducible) Matrix Fraction Description (MFD). In cases (ii) and (iii) the poles of the rational functions involved may be anywhere in the complex plane, but the unit circle (including both zero and infinity). A special attention is devoted to exploring the gap between the square and rectangular cases.
【 授权许可】
Unknown