期刊论文详细信息
Sustainability
Response of Rice (Oryza sativa L.) Cultivars to Variable Rate of Nitrogen under Wet Direct Seeding in Temperate Ecology
Waseem Raja1  Syed Sheraz Mahdi1  Mohammad Anwar Bhat1  Ayman EL Sabagh2  Milan Skalicky3  Marian Brestic3  Akihiro Ueda4  Ashaq Hussain5  Intikhab Aalum Jehangir5  Shabir H. Wani5  Najeeb R. Sofi5  Manzoor A. Ganai5  Nazir Ahmad Teeli5  Walid Soufan6 
[1] Department of Agronomy, Faculty of Agriculture (F.O.A.), Wadura, Sopore 193 201, Jammu & Kashmir, India;Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33156, Egypt;Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka, 129, 165 00 Prague, Czech Republic;Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan;Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, Anantnag, Kashmir 192 102, Jammu & Kashmir, India;Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
关键词: direct seeded rice;    nitrogen;    rice;    water productivity;    temperate ecology;    yield;   
DOI  :  10.3390/su14020638
来源: DOAJ
【 摘 要 】

Transplanting rice appears to pose many problems, including depletion of freshwater reservoirs and competition for labor. Conversely, direct seeding allows us to overcome shortcomings associated with conventional transplanting. Nitrogen is a crucial nutrient needed for plant growth and yield. Therefore, this study was executed to analyze the influence of nitrogen on the performance of rice genotypes grown by direct seeding in wet soil. The experiment comprised various rice cultivars, i.e., Shalimar Rice-1, Shalimar Rice-3, Shalimar Rice-4, and Jhelum, and nitrogen (N) levels, i.e., 0, 90, 120, and 150 kg/ha. Shalimar Rice-4 produced a maximum grain yield (6.39 t/ha), followed by Shalimar Rice-3 and Jhelum). The application of 150 kg N/ha showed maximum values for growth parameters, yield attributing traits, and grain yield (6.68 t/ha); however, it remained at par with 120 kg N/ha. Crop water productivity was highest in Shalimar Rice-4 (0.49 kg/m3), and the same showed a consistent increase with increasing N levels from 0–150 kg/ha, with a comparable value of 0.49 to 0.51 recorded at 120 and 150 kg N/ha. Moreover, the Shalimar Rice-1 variety required the maximum in growing degree days (GDD) and helio-thermal units (HTU) to attain different phenological stages till physiological maturity (131 days). However, the cultivar Shalimar rice-4 (SR-4) performed better by registering significantly higher heat use efficiency (HUE) (4.44 kg/ha °C/day). Additionally, the highest net return and the benefit-cost ratio were registered by Shalimar Rice-4. B:C ratio of 1.75 was realized from application of 150 kg N/ha, which remained very close to that achieved with 120 kg N/ha. In conclusion, the rice cultivar Shalimar Rice-4 with the application of 120 kg N/ha could boost rice production under DSR in water-scarce regions of temperate northern India.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次