期刊论文详细信息
Materials
Molecular Dynamics Study of an Amorphous Polyethylene/Silica Interface with Shear Tests
Shuai Zhou1  Xiaoying Zhuang1 
[1] Institute of Continuum Mechanics, Leibniz University Hannover, 30167 Hannover, Germany;
关键词: polyethylene;    damage process;    composite;    silane coupling agent;    interface;   
DOI  :  10.3390/ma11060929
来源: DOAJ
【 摘 要 】

An amorphous polyethylene/silica (PE/S) interface exists in many materials. However, the research of the interfacial properties at microscale is lacking. Shear failure and adhesion properties of an amorphous PE/S interface are studied by molecular dynamics. The effects of PE chain length, the number of chains, and coupling agents on the shear behavior and interfacial adhesion are investigated. It is found that the modified silica (mS) surface induces an increase in the adhesion strength compared to unmodified S. The damage process and failure mode of the PE/S and PE/mS interface are analyzed at microscale. The contribution of bond length, bond angle, torsional potentials, and nonbonded energy is estimated as a function of the shear deformation to clarify the deformation mechanisms. The energy partitioning results indicate that the elastic, yield, and postyielding regions are mostly controlled by the nonbonded interactions. The dihedral motions of the chains also have an influence. Furthermore, the simulation results exhibit how the internal mechanism evolves with the shear deformation.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次