期刊论文详细信息
Frontiers in Microbiology
Variation of Soil Microbial Community and Sterilization to Fusarium oxysporum f. sp. niveum Play Roles in Slightly Acidic Electrolyzed Water-Alleviated Watermelon Continuous Cropping Obstacle
Lin Ye1  Yudong Sun2  Kai Cao3  Encai Bao3  Liru Xia3  Zhangying Ye4  Daipeng Lu5  Yiwen Wu5  Cuinan Wu5  Xue Wu5  Yuxin Tang5 
[1] Agriculture College, Ningxia University, Yingchuan, China;Jiangsu Xuhuai Region Huaiyin Institute of Agricultural Science, Huai’an, China;School of Agricultural Engineering, Jiangsu University, Zhenjiang, China;School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China;The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China;
关键词: soil microbial diversity;    Fusarium oxysporum f. sp. niveum;    watermelon;    continuous cropping obstacle;    slightly acidic electrolyzed water;   
DOI  :  10.3389/fmicb.2022.837121
来源: DOAJ
【 摘 要 】

It is critical to exploit technologies for alleviating watermelon continuous cropping obstacle which frequently occurs and results in the limiting production and economic losses of watermelon. This study aimed to explore the effects of slightly acidic electrolyzed water (SAEW) on watermelon continuous cropping obstacles. The results showed that SAEW significantly improved the growth of watermelon seedlings cultivated in continuous cropping soil and caused a mass of changes to the diversity of the soil microbial community. Compared with Con, SAEW decreased the diversity index of bacteria by 2%, 0.48%, and 3.16%, while it increased the diversity index of fungus by 5.68%, 10.78%, and 7.54% in Shannon, Chao1, and ACE index, respectively. Besides, the enrichment level of Fusarium oxysporum f. sp. niveum (FON) was remarkably downregulated by 50.2% at 14 days of SAEW treatment, which could decrease the incidence of Fusarium wilt disease. The wet and dry weights of FON mycelia in the fluid medium were depressed more than 93%, and the number of FON colonies in continuous cropping soil was reduced by 83.56% with SAEW treatment. Additionally, a strong correlation between watermelon, FON, and SAEW was presented by correlation analysis. Furthermore, the content of endogenous reactive oxygen species (ROS) was over quadruply increased by SAEW, which may contribute to the sterilizing effect of SAEW on FON. Taken together, our findings demonstrated that exogenous SAEW could alter the soil microbial diversity and decrease the accumulation of FON, which improved the growth of watermelon seedlings and finally alleviated continuous cropping obstacles of watermelon.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次