Future Journal of Pharmaceutical Sciences | |
A new bonded silica based on an amino acid derivative as a TLC stationary phase to solve nitrophenol structural isomerism and ibuprofen stereoisomerism | |
Ahmad Alshaghel1  Amir Alhaj Sakur2  Mouhammad Abu Rasheed2  | |
[1] Department of Chemistry, Faculty of Sciences, University of Aleppo;Department of Food & Analytical Chemistry, Faculty of Pharmacy, University of Aleppo; | |
关键词: Thin layer chromatography; Stationary phase; Bonded silica; Ligand exchange reagent; Chiral selector; Enantioseparation; | |
DOI : 10.1186/s43094-020-00064-8 | |
来源: DOAJ |
【 摘 要 】
Abstract Background Many amino acids and their derivatives have been used previously as chiral selectors in thin layer chromatography. Herein, we reported the synthesis, characterization, and chromatographic evaluation of a new modified stationary phase based on (S)-3-(aminomethyl)-5-methylhexanoic acid (also known as pregabalin) as an amino acid ligand bonded to the silica surface via triazine attachment. Results SC-2P (silica-cyanuric-2-pregabalin) is a bonded silica stationary phase prepared by direct binding of the pre-synthesized cyanuric-2-pregabalin organic ligand on the chlorinated silica surface. FT-IR and UV diffuse reflection spectroscopy (UV-DRS) were used to characterize the synthesized bonded phase, and the specific surface area was determined using the methylene blue Langmuir isotherm method to be 147.04 m2/g. TLC plates were prepared from a slurry of this synthesized material with 2 mM of Cu2+ as a selector additive, and the chromatographic characteristics of these plates were investigated to separate a ternary mixture of o-, m-, and p-nitrophenol as structural isomers, and a racemic mixture of (±)-ibuprofen as stereoisomers. Solvent systems of n-hexane:dichloroethane:n-propanol (75:20:5, v/v/v) and Dichloroethane:acetonitrile (90:10, v/v) were selected as mobile phases for nitrophenol and ibuprofen mixtures, respectively. The successful separation was densitometrically confirmed, and retardation factors (R f) were determined for o-, m-, and p-nitrophenol at 320 nm to be 0.83, 0.45, and 0.28, and for R(−)-, S(+)-ibuprofen at 220 nm to be 0.43 and 0.63, respectively. Conclusion The synthesis, characterization, and chromatographic evaluation of SC-2P were reported in this article. SC-2P was used with copper ions to form in situ ligand exchange reagent (LER), which was successfully employed to solve an isomeric mixture of nitrophenol and a racemic mixture of (±)-ibuprofen. The synthesized stationary phase showed high repeatability with minimum R f shifts between batches.
【 授权许可】
Unknown