期刊论文详细信息
Materials
Precise Drilling of Holes in Alumina Ceramic (Al2O3) by Rotary Ultrasonic Drilling and its Parameter Optimization using MOGA-II
Hisham Alkhalefah1 
[1] Raytheon Chair for Systems Engineering (RCSE), Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia;
关键词: ceramics;    rotary ultrasonic drilling (rud);    central composite design (ccd);    multi-objective genetic algorithm (moga-ii);    aluminum oxide;   
DOI  :  10.3390/ma13051059
来源: DOAJ
【 摘 要 】

Alumina is an advanced ceramic with applications in dental and medical sciences. Since ceramics are hard and brittle, their conventional machining is expensive, arduous, and time-consuming. As rotary ultrasonic machining is among the most adequate and proficient processing techniques for brittle materials like ceramics. Therefore, in this study, rotary ultrasonic drilling (RUD) has been utilized to drill holes on alumina ceramic (Al2O3). This study investigates the effect of key RUD process variables, namely vibration frequency, vibration amplitude, spindle speed, and feed rate on the dimensional accuracy of the drilled holes. A four-variable three-level central composite design (thirty experiments on three sample plates) is utilized to examine the comparative significance of different RUD process variables. The multi-objective genetic algorithm is employed to determine the optimal parametric conditions. The findings revealed that material removal rates depend on feed rate, while the cylindricity of the holes is mostly controlled by the speed and feed rate of the spindles. The optimal parametric combination attained for drilling quality holes is speed = 4000 rpm, feed rate = 1.5 (mm/min), amplitude = 20 (µm), and frequency = 23 (kHz). The validation tests were also conducted to confirm the quality of drilled holes at the optimized process parameters.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次