期刊论文详细信息
Entropy
Topological Quantum Codes from Lattices Partition on the n-Dimensional Flat Tori
Eduardo Brandani da Silva1  Edson Donizete de Carvalho2  Waldir Silva Soares3 
[1] Departament of Mathematics, UEM, Av. Colombo 5790, Maringa, PR 87020-900, Brazil;Department of Mathematics, UNESP, Ilha Solteira, SP 15385-000, Brazil;Department of Mathematics, UTFPR, Pato Branco, PR 85503-390, Brazil;
关键词: color codes;    surface codes;    toric codes;    flat torus;    lattice partition;   
DOI  :  10.3390/e23080959
来源: DOAJ
【 摘 要 】

In this work, we show that an n-dimensional sublattice Λ=mΛ of an n-dimensional lattice Λ induces a G=Zmn tessellation in the flat torus Tβ=Rn/Λ, where the group G is isomorphic to the lattice partition Λ/Λ. As a consequence, we obtain, via this technique, toric codes of parameters [[2m2,2,m]], [[3m3,3,m]] and [[6m4,6,m2]] from the lattices Z2, Z3 and Z4, respectively. In particular, for n=2, if Λ1 is either the lattice Z2 or a hexagonal lattice, through lattice partition, we obtain two equivalent ways to cover the fundamental cell P0 of each hexagonal sublattice Λ of hexagonal lattices Λ, using either the fundamental cell P0 or the Voronoi cell V0. These partitions allow us to present new classes of toric codes with parameters [[3m2,2,m]] and color codes with parameters [[18m2,4,4m]] in the flat torus from families of hexagonal lattices in R2.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次