期刊论文详细信息
Journal of the Egyptian Mathematical Society | |
On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ | |
Naglaa M. El–Shazly1  Mohamed A. Ramadan1  | |
[1] Department of Mathematics and Computer Science, Faculty of Science, Menoufia University; | |
关键词: Nonlinear matrix equation; Maximal positive solution; Iteration; Matrix differentiation; Perturbation bound; | |
DOI : 10.1186/s42787-019-0052-7 | |
来源: DOAJ |
【 摘 要 】
Abstract In this paper, we study the perturbation estimate of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ using the differentiation of matrices. We derive the differential bound for this maximal solution. Moreover, we present a perturbation estimate and an error bound for this maximal solution. Finally, a numerical example is given to clarify the reliability of our obtained results.
【 授权许可】
Unknown