期刊论文详细信息
Journal of the Egyptian Mathematical Society
On the perturbation analysis of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$
Naglaa M. El–Shazly1  Mohamed A. Ramadan1 
[1] Department of Mathematics and Computer Science, Faculty of Science, Menoufia University;
关键词: Nonlinear matrix equation;    Maximal positive solution;    Iteration;    Matrix differentiation;    Perturbation bound;   
DOI  :  10.1186/s42787-019-0052-7
来源: DOAJ
【 摘 要 】

Abstract In this paper, we study the perturbation estimate of the maximal solution for the matrix equation X−∑i=1mAi∗X−1Ai+∑j=1nBj∗X−1Bj=I $$ X-\overset{m}{\sum \limits_{i=1}}{A}_i^{\ast}\kern0.1em {X}^{-1}\kern0.1em {A}_i+\sum \limits_{j=1}^n{B}_j^{\ast}\kern0.1em {X}^{-1}\kern0.1em {B}_j=I $$ using the differentiation of matrices. We derive the differential bound for this maximal solution. Moreover, we present a perturbation estimate and an error bound for this maximal solution. Finally, a numerical example is given to clarify the reliability of our obtained results.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次