期刊论文详细信息
Tellus: Series A, Dynamic Meteorology and Oceanography
The influence of winter and summer atmospheric circulation on the variability of temperature and sea ice around Greenland
David G. Barber1  Søren Rysgaard1  Masayo Ogi1 
[1] Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada;
关键词: Greenland;    temperature;    Arctic;    sea ice extent;    atmospheric circulation;    surface air temperature;    interannual variation;    trend;    summer Arctic Oscillation;   
DOI  :  10.3402/tellusa.v68.31971
来源: DOAJ
【 摘 要 】

Most peripheral seas of the Arctic Ocean have seen a pronounced rise in sea surface temperatures in the past century, and this signature of Arctic amplification in proximity to the land suggests that the observed marine and terrestrial changes might be connected to each other. Using in situ observations of temperature from nine coastal meteorological stations around Greenland (GrSTs) and remotely sensed fields of sea ice extent (SIE), we examine the interannual variations of surface air temperature (T2m) and sea level pressure (SLP) anomalies associated with the GrSTs and SIEs surrounding Greenland, specifically within Baffin Bay, the Greenland Sea and Kara-Barents Seas. During winter, the interannual variation in T2m and SLP of the west and south coasts of GrSTs and the Baffin Bay SIE are different from that of the east coast of GrSTs and the SIEs in the Greenland Sea and Kara-Barents Seas. The GrSTs on the west and south coasts of Greenland and the Baffin Bay SIE are associated with the T2m anomalies over Baffin Bay and Davis Strait. The winter SLP patterns associated with these GrSTs and SIEs show positive anomalies over the Arctic and negative anomalies over the North Atlantic with a large-scale atmospheric circulation such as the winter NAO. On the contrary, the east coast of GrSTs and the SIEs in the Greenland Sea and Kara-Barents Seas are correlated with the T2m anomalies over the Greenland Sea and Barents Sea. The surface wind pattern associated with the SIEs in the Greenland Sea and Kara-Barents Seas has a cyclonic circulation in the Greenland Sea and Barents Sea. At the local scale the cyclonic circulation could induce negative SIE anomalies and contribute to increasing open water in the Greenland Sea and Barents Sea. The effect of the loss of sea ice and the heat from the open ocean warming to the atmosphere may influence the GrSTs in the east coast of Greenland. As a result, the T2m pattern associated with the GrSTs in the east coast of Greenland is similar to the pattern of the SIEs in the Greenland Sea and Kara-Barents Seas. During summer, the T2m anomalies associated with all GrSTs and SIEs have positive anomalies over mid-latitudes. The two times series of all GrSTs and SIEs fluctuate quickly and display large trends towards warming temperatures and decreasing SIE. The summer SLP associated with all GrSTs and SIEs are characterised by a seesaw pattern between positive anomalies over the Arctic and negative anomalies over mid-latitudes. The summer SLP anomalies are similar to the summer AO pattern, and it is noteworthy that the summer anticyclonic circulation over the Arctic and Greenland has contributed to the variability and trends in both summer GrSTs and SIEs.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:5次