期刊论文详细信息
SoftwareX
ACORNS: An easy-to-use code generator for gradients and Hessians
Daniele Panozzo1  Etai Shuchatowitz2  Zhongshi Jiang2  Teseo Schneider2  Deshana Desai2 
[1] Corresponding author.;New York University, 60 5th Ave, New York, NY 10011, United States of America;
关键词: Code generation;    Automatic differentiation;   
DOI  :  
来源: DOAJ
【 摘 要 】

The computation of first and second-order derivatives is a staple in many computing applications, ranging from machine learning to scientific computing. We propose an algorithm to automatically differentiate algorithms written in a subset of C99 code and its efficient implementation as a Python script. We demonstrate that our algorithm enables automatic, reliable, and efficient differentiation of common algorithms used in physical simulation and geometry processing.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:7次