期刊论文详细信息
Heliyon
Adaption of microbial communities to the hostile environment in the Doce River after the collapse of two iron ore tailing dams
Luiz Gustavo dos Anjos Borges1  Renata Medina-Silva2  Rosalia Barili2  Tiago de Abreu Siqueira3  Eduardo Moreira-Silva4  Caroline Thais Martinho5  Pâmela de Lara Palhano5  Maria Pilar Serbent5  João Marcelo Medina Ketzer5  Adriana Giongo5  Letícia Marconatto5  Lisiê Valéria Paz6  Letícia Isabela Moser7  Carolina De Marco Veríssimo7 
[1] Environmental Engineering Graduate Program, Universidade Regional de Blumenau (FURB), Blumenau, Brazil;Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil;Sanitary Microbiology Laboratory, Department of Sanitary Engineering, Universidade do Estado de Santa Catarina (UDESC), Ibirama, Brazil;Environmental Engineering Graduate Program, Universidade Regional de Blumenau (FURB), Blumenau, Brazil;Geobiology Laboratory, Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil;Geochemical Analyses Laboratory, Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil;Sedimentology and Petrology Laboratory, Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil;
关键词: Aquatic ecology;    Ecosystem change;    Microbial ecology;    Water pollution;    Bacteria;    Protozoa;   
DOI  :  
来源: DOAJ
【 摘 要 】

In November 2015, two iron ore tailing dams collapsed in the city of Mariana, Brazil. The dams' collapse generated a wave of approximately 50 million m3 of a mixture of mining waste and water. It was a major environmental tragedy in Brazilian history, which damaged rivers, and cities 660 km away in the Doce River basin until it reached the ocean coast. Shortly after the incident, several reports informed that the concentration of metals in the water was above acceptable legal limits under Brazilian laws. Here the microbial communities in samples of water, mud, foam, and rhizosphere of Eichhornia from Doce River were analyzed for 16S and 18S rRNA-based amplicon sequencing, along with microbial isolation, chemical and mineralogical analyses. Samples were collected one month and thirteen months after the collapse. Prokaryotic communities from mud shifted drastically over time (33% Bray-Curtis similarity), while water samples were more similar (63% Bray-Curtis similarity) in the same period. After 12 months, mud samples remained with high levels of heavy metals and a reduction in the diversity of microeukaryotes was detected. Amoebozoans increased in mud samples, reaching 49% of microeukaryote abundance, with Discosea and Lobosa groups being the most abundant. The microbial communities’ structure in mud samples changed adapting to the new environment condition. The characterization of microbial communities and metal-tolerant organisms from such impacted environments is essential for understanding the ecological consequences of massive anthropogenic impacts and strategies for the restoration of contaminated sites such as the Doce River.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次