期刊论文详细信息
Applied Sciences
Unidirectional Slow Light Transmission in Heterostructure Photonic Crystal Waveguide
Xun Li1  Qiuyue Zhang1 
[1] Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
关键词: delay-bandwidth products;    group velocity dispersion;    flat band;    slow light;    interfacial defects;    backscattering-immune;   
DOI  :  10.3390/app8101858
来源: DOAJ
【 摘 要 】

In conventional photonic crystal systems, extrinsic scattering resulting from random manufacturing defects or environmental changes is a major source of loss that causes performance degradation, and the backscattering loss is amplified as the group velocity slows down. In order to overcome the limitations in slow light systems, we propose a backscattering-immune slow light waveguide design. The waveguide is based on an interface between a square lattice of magneto-optical photonic crystal with precisely tailored rod radii of the first two rows and a titled 45 degrees square lattice of Alumina photonic crystal with an aligned band gap. High group indices of 77, 68, 64, and 60 with the normalized frequency bandwidths of 0.444%, 0.481%, 0.485%, and 0.491% are obtained, respectively. The corresponding normalized delay-bandwidth products remain around 0.32 for all cases, which are higher than previously reported works based on rod radius adjustment. The robustness for the edge modes against different types of interfacial defects is observed for the lack of backward propagation modes at the same frequencies as the unidirectional edge modes. Furthermore, the transmission direction can be controlled by the sign of the externally applied magnetic field normal to the plane.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次