期刊论文详细信息
Communications
A Data-Driven Method for Vehicle Speed Estimation
Stefano Feraco1  Angelo Bonfitto1 
[1] LIM - Laboratorio Interdisciplinare di Meccatronica, Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Torino, Italy;
关键词: vehicle speed;    artificial neural networks;    estimation;    regression;    classification;    road identification;   
DOI  :  10.26552/com.C.2021.3.B165-B177
来源: DOAJ
【 摘 要 】

This paper presents a method based on Artificial Neural Networks for estimation of the vehicle speed. The technique exploits the combination of two tasks: a) speed estimation by means of regression neural networks dedicated to different road conditions (dry, wet and icy); b) identification of the road condition with a pattern recognition neural network. The training of the networks is conducted with experimental datasets recorded during the driving sessions performed with a vehicle on different tracks. The effectiveness of the proposed approach is validated experimentally on the same car by deploying the algorithm on a dSPACE computing platform. The estimation accuracy is evaluated by comparing the obtained results to the measurement of an optical sensor installed on the vehicle and to the output of another estimation method, based on the mean value of velocity of the four wheels.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次