Brain Sciences | |
Differential Expression of Genes Related to Innate Immune Responses in Ex Vivo Spinal Cord and Cerebellar Slice Cultures Infected with West Nile Virus | |
A.Arturo Leis1  AmberM. Paul2  Deyin Lu3  ParminderJ. S. Vig3  Maria Lopez3  Fengwei Bai4  MichaelR. Garrett5  DobrivojeS. Stokic6  Ram Kuwar7  | |
[1] Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA;Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA;Experimental Therapeutics and Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216, USA;Methodist Rehabilitation Center, Jackson, MS 39216, USA;;Neurobiology &Virginia Commonwealth University, Richmond, VA 23284, USA; | |
关键词: West Nile; interferons; cerebellum; spinal cord; cultures; gene expression; astrogliosis; | |
DOI : 10.3390/brainsci9010001 | |
来源: DOAJ |
【 摘 要 】
West Nile virus (WNV) infection results in a spectrum of neurological symptoms, ranging from a benign fever to severe WNV neuroinvasive disease with high mortality. Many who recover from WNV neuroinvasive infection present with long-term deficits, including weakness, fatigue, and cognitive problems. While neurons are a main target of WNV, other cell types, especially astrocytes, play an important role in promoting WNV-mediated central nervous system (CNS) damage. Conversely, it has been shown that cultured primary astrocytes secrete high levels of interferons (IFNs) immediately after WNV exposure to protect neighboring astrocytes, as well as neurons. However, how intrinsic responses to WNV in specific cell types and different regions of the brain modify immune protection is not fully understood. Here, we used a mouse ex vivo spinal cord slice culture (SCSC) and cerebellar slice culture (CSC) models to determine the innate immune responses specific to the CNS during WNV infection. Slices were prepared from the spinal cord and cerebellar tissue of 7–9-day-old mouse pups. Four-day-old SCSC or CSC were infected with 1 × 103 or 1 × 105 PFU of WNV, respectively. After 12 h exposure to WNV and 3 days post-infection in normal growth media, the pooled slice cultures were processed for total RNA extraction and for gene expression patterns using mouse Affymetrix arrays. The expression patterns of a number of genes were significantly altered between the mock- and WNV-treated groups, both in the CSCs and SCSCs. However, distinct differences were observed when CSC data were compared with SCSC. CSCs showed robust induction of interferons (IFNs), IFN-stimulated genes (ISGs), and regulatory factors. Some of the antiviral genes related to IFN were upregulated more than 25-fold in CSCs as compared to mock or SCSC. Though SCSCs had twice the number of dysregulated genes, as compared CSCs, they exhibited a much subdued IFN response. In addition, SCSCs showed astrogliosis and upregulation of astrocytic marker genes. In sum, our results suggest that early anti-inflammatory response to WNV infection in CSCs may be due to large population of distinct astrocytic cell types, and lack of those specialized astrocytes in SCSC may make spinal cord cells more susceptible to WNV damage. Further, the understanding of early intrinsic immune response events in WNV-infected ex vivo culture models could help develop potential therapies against WNV.
【 授权许可】
Unknown