期刊论文详细信息
Agronomy
Spore Density of Arbuscular Mycorrhizal Fungi is Fostered by Six Years of a No-Till System and is Correlated with Environmental Parameters in a Silty Loam Soil
Bertrand Hirel1  David Roger2  Elodie Nivelle2  Frédéric Dubois2  Julien Verzeaux2  Thierry Tetu2 
[1] Adaptation des Plantes à leur Environnement, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, R.D. 10, Versailles CEDEX F-78026, France;Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d’Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, Amiens CEDEX 80039, France;
关键词: tillage;    nitrogen fertilization;    arbuscular mycorrhizal fungi;    spore density;    microbial activity;   
DOI  :  10.3390/agronomy7020038
来源: DOAJ
【 摘 要 】

Arbuscular mycorrhizal fungi (AMF) play major roles in nutrient acquisition by crops and are key actors of agroecosystems productivity. However, agricultural practices can have deleterious effects on plant–fungi symbiosis establishment in soils, thus inhibiting its potential benefits on plant growth and development. Therefore, we have studied the impact of different soil management techniques, including conventional moldboard ploughing and no-till under an optimal nitrogen (N) fertilization regime and in the absence of N fertilization, on AMF spore density and soil chemical, physical, and biological indicators in the top 20 cm of the soil horizon. A field experiment conducted over six years revealed that AMF spore density was significantly lower under conventional tillage (CT) combined with intensive synthetic N fertilization. Under no-till (NT) conditions, the density of AMF spore was at least two-fold higher, even under intensive N fertilization conditions. We also observed that there were positive correlations between spore density, soil dehydrogenase enzyme activity, and soil penetration resistance and negative correlations with soil phosphorus and mineral N contents. Therefore, soil dehydrogenase activity and soil penetration resistance can be considered as good indicators of soil quality in agrosystems. Furthermore, the high nitrate content of ploughed soils appears to be detrimental both for the dehydrogenase enzyme activity and the production of AMF spores. It can be concluded that no-till, by preventing soil from structural and chemical disturbances, is a farming system that preserves the entire fungal life cycle and as such the production of viable spores of AMF, even under intensive N fertilization.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次