期刊论文详细信息
Advanced Science
2D MXene‐Integrated 3D‐Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction
Youshui Gao1  Changqing Zhang1  Junhui Yin1  Yufang Zhu2  Yu Chen2  Luodan Yu2  Shanshan Pan2 
[1] Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 P. R. China;State Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China;
关键词: bone tumors;    MXenes;    photothermal therapy;    scaffolds;    tissue engineering;   
DOI  :  10.1002/advs.201901511
来源: DOAJ
【 摘 要 】

Abstract The residual of malignant tumor cells and lack of bone‐tissue integration are the two critical concerns of bone‐tumor recurrence and surgical failure. In this work, the rational integration of 2D Ti3C2 MXene is reported with 3D‐printing bioactive glass (BG) scaffolds for achieving concurrent bone‐tumor killing by photonic hyperthermia and bone‐tissue regeneration by bioactive scaffolds. The designed composite scaffolds take the unique feature of high photothermal conversion of integrated 2D Ti3C2 MXene for inducing bone‐tumor ablation by near infrared‐triggered photothermal hyperthermia, which has achieved the complete tumor eradication on in vivo bone‐tumor xenografts. Importantly, the rational integration of 2D Ti3C2 MXene is demonstrated to efficiently accelerate the in vivo growth of newborn bone tissue of the composite BG scaffolds. The dual functionality of bone‐tumor killing and bone‐tissue regeneration makes these Ti3C2 MXene‐integrated composite scaffolds highly promising for the treatment of bone tumors, which also substantially broadens the biomedical applications of 2D MXenes in tissue engineering, especially on the treatment of bone tumors.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:4次