Applied Sciences | |
Condition Rating Prediction Using an Interactive Deterioration Model Development Package | |
Minwoo Chang1  Marc Maguire2  | |
[1] Department of Civil and Environmental Engineering, Myongji University, Yongin-si, Gyeonggi-do 17058, Korea;Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; | |
关键词: bridge condition rating; deterioration model; bridge monitoring system; explanatory variables; structural health monitoring; | |
DOI : 10.3390/app10248946 | |
来源: DOAJ |
【 摘 要 】
This paper presents an advanced method to determine explanatory variables required for developing deterioration models without the interference of human bias. Although a stationary set of explanatory variables is ideal for long-term monitoring and asset management, the penalty regression results vary annually due to the innate bias in the inspection data. In this study, weighting factors were introduced to consider the inspection data collected for several years, and the most stationary set was identified. To manage the substantial amount of inspection data effectively, we proposed a software package referred to as the Deterioration Model Development Package (DMDP). The objective of the DMDP is to provide a convenient platform for users to process and investigate bridge inspection data. Using the standardized data interpretation, the user can update an initial dataset for the deterioration model development when new inspection data are archived. The deterministic method and several stochastic approaches were included for the development of the deterioration models. The performances of the investigated methods were evaluated by estimating the error between the predicted and inspected condition ratings; further, this error was used for estimating the most effective number of explanatory variables for a given number of bridges.
【 授权许可】
Unknown