期刊论文详细信息
Applied Sciences
Multi-Beam Circular Polarized Reflectarray on Parabolic Reflector by Variable Rotation Technique
Iván González1  Rafael Florencio1  Felipe Cátedra1  Álvaro Somolinos2 
[1] Department of Computer Science, University of Alcalá, 28805 Alcalá de Henares, Spain;newFASANT, 19005 Guadalajara, Spain;
关键词: reflectarray;    satellite antennas;    multibeam antennas;    moment method;   
DOI  :  10.3390/app9132659
来源: DOAJ
【 摘 要 】

Multi-beams antennas are currently being used for direct broadcast satellite, personal communication satellite, military communication satellite, and high-speed internet applications. In this work, a circularly polarized (CP) multi-spot beam satellite parabolic reflectarray antenna is designed to provide six spot beams at 19.7 GHz. For this purpose, an easy technique to compute the required phase shifts to produce two focused beams in specular directions for a CP parabolic reflectarray is proposed. These required phase shifts are added to the reflected fields by the variable rotation of the reflectarray elements printed on the surface of a parabolic antenna which are fed by a dual-CP feed-horn. For this purpose, a reflectarray cell made of a conductive cross embedded in a grounded multilayered substrate is optimized to produce very linear phase-shift and low cross-polarization level. To demonstrate the multibeam capacity, a 1.8-meter offset parabolic reflectarray made of the optimized reflectarray element was designed to generate six focused beams in dual-CP with three dual-CP feed-horns. The six main spots fulfill the typical multi spot satellite requirement with angular separation less than 0.56°, 0.4 dB loss in the gain, and cross-polarization level below 35 dB with respect to the maximum of radiation.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次