Journal of Inequalities and Applications | |
On statistical A $\mathfrak{A}$ -Cauchy and statistical A $\mathfrak{A}$ -summability via ideal | |
M. Mursaleen1  Osama H. H. Edely2  | |
[1] Department of Mathematics, Aligarh Muslim University;Department of Mathematics, Tafila Technical University; | |
关键词: Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -limit superior; Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -limit inferior; Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -bounded; Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy summability; Statistical A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summability; Tauberian theorem; | |
DOI : 10.1186/s13660-021-02564-4 | |
来源: DOAJ |
【 摘 要 】
Abstract The notion of statistical convergence was extended to I $\mathfrak{I}$ -convergence by (Kostyrko et al. in Real Anal. Exch. 26(2):669–686, 2000). In this paper we use such technique and introduce the notion of statistically A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy and statistically A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summability via the notion of ideal. We obtain some relations between them and prove that under certain conditions statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy and statistical A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summability are equivalent. Moreover, we give some Tauberian theorems for statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -summability.
【 授权许可】
Unknown