期刊论文详细信息
Channels
Capsaicin as an amphipathic modulator of NaV1.5 mechanosensitivity
Radda Rusinova1  Olaf S. Andersen1  Gianrico Farrugia2  Luke M. Cowan2  Arthur Beyder2  Peter R. Strege2 
[1] Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA;Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA;
关键词: Amphipathic;    arrhythmia;    capsaicin;    electrophysiology;    functional gastrointestinal disorder;    ion channel;   
DOI  :  10.1080/19336950.2022.2026015
来源: DOAJ
【 摘 要 】

SCN5A-encoded NaV1.5 is a voltage-gated Na+ channel that drives the electrical excitability of cardiac myocytes and contributes to slow waves of the human gastrointestinal smooth muscle cells. NaV1.5 is mechanosensitive: mechanical force modulates several facets of NaV1.5’s voltage-gated function, and some NaV1.5 channelopathies are associated with abnormal NaV1.5 mechanosensitivity (MS). A class of membrane-active drugs, known as amphiphiles, therapeutically target NaV1.5’s voltage-gated function and produce off-target effects including alteration of MS. Amphiphiles may provide a novel option for therapeutic modulation of NaV1.5’s mechanosensitive operation. To more selectively target NaV1.5 MS, we searched for a membrane-partitioning amphipathic agent that would inhibit MS with minimal closed-state inhibition of voltage-gated currents. Among the amphiphiles tested, we selected capsaicin for further study. We used two methods to assess the effects of capsaicin on NaV1.5 MS: (1) membrane suction in cell-attached macroscopic patches and (2) fluid shear stress on whole cells. We tested the effect of capsaicin on NaV1.5 MS by examining macro-patch and whole-cell Na+ current parameters with and without force. Capsaicin abolished the pressure- and shear-mediated peak current increase and acceleration; and the mechanosensitive shifts in the voltage-dependence of activation (shear) and inactivation (pressure and shear). Exploring the recovery from inactivation and use-dependent entry into inactivation, we found divergent stimulus-dependent effects that could potentiate or mitigate the effect of capsaicin, suggesting that mechanical stimuli may differentially modulate NaV1.5 MS. We conclude that selective modulation of NaV1.5 MS makes capsaicin a promising candidate for therapeutic interventions targeting MS.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次