BMC Bioinformatics | |
CoQUAD: a COVID-19 question answering dataset system, facilitating research, benchmarking, and practice | |
Laura C. Rosella1  Shaina Raza2  Brian Schwartz2  | |
[1] Dalla Lana School of Public Health, University of Toronto;Public Health Ontario (PHO); | |
关键词: COVID-19; Transformer model; Question answering system; Pipeline; CORD-19; LitCOVID; | |
DOI : 10.1186/s12859-022-04751-6 | |
来源: DOAJ |
【 摘 要 】
Abstract Background Due to the growing amount of COVID-19 research literature, medical experts, clinical scientists, and researchers frequently struggle to stay up to date on the most recent findings. There is a pressing need to assist researchers and practitioners in mining and responding to COVID-19-related questions on time. Methods This paper introduces CoQUAD, a question-answering system that can extract answers related to COVID-19 questions in an efficient manner. There are two datasets provided in this work: a reference-standard dataset built using the CORD-19 and LitCOVID initiatives, and a gold-standard dataset prepared by the experts from a public health domain. The CoQUAD has a Retriever component trained on the BM25 algorithm that searches the reference-standard dataset for relevant documents based on a question related to COVID-19. CoQUAD also has a Reader component that consists of a Transformer-based model, namely MPNet, which is used to read the paragraphs and find the answers related to a question from the retrieved documents. In comparison to previous works, the proposed CoQUAD system can answer questions related to early, mid, and post-COVID-19 topics. Results Extensive experiments on CoQUAD Retriever and Reader modules show that CoQUAD can provide effective and relevant answers to any COVID-19-related questions posed in natural language, with a higher level of accuracy. When compared to state-of-the-art baselines, CoQUAD outperforms the previous models, achieving an exact match ratio score of 77.50% and an F1 score of 77.10%. Conclusion CoQUAD is a question-answering system that mines COVID-19 literature using natural language processing techniques to help the research community find the most recent findings and answer any related questions.
【 授权许可】
Unknown