Sensors | |
Online Learning Approach for Predictive Real-Time Energy Trading in Cloud-RANs | |
MohammadReza Nakhai1  R.Badlishah Ahmad2  HaslizaA. Rahim2  WanNur Suryani FiruzWan Ariffin2  Xinruo Zhang3  | |
[1] Department of Informatics, Centre for Telecommunications Research, King’s College London, Aldwych WC2B 4BG, UK;Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia;School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; | |
关键词: cloud radio access network; combinatorial multi-armed bandit; online learning; energy trading; | |
DOI : 10.3390/s21072308 | |
来源: DOAJ |
【 摘 要 】
Constantly changing electricity demand has made variability and uncertainty inherent characteristics of both electric generation and cellular communication systems. This paper develops an online learning algorithm as a prescheduling mechanism to manage the variability and uncertainty to maintain cost-aware and reliable operation in cloud radio access networks (Cloud-RANs). The proposed algorithm employs a combinatorial multi-armed bandit model and minimizes the long-term energy cost at remote radio heads. The algorithm preschedules a set of cost-efficient energy packages to be purchased from an ancillary energy market for the future time slots by learning both from cooperative energy trading at previous time slots and by exploring new energy scheduling strategies at the current time slot. The simulation results confirm a significant performance gain of the proposed scheme in controlling the available power budgets and minimizing the overall energy cost compared with recently proposed approaches for real-time energy resources and energy trading in Cloud-RANs.
【 授权许可】
Unknown