期刊论文详细信息
BMC Medical Research Methodology
Directed acyclic graphs and causal thinking in clinical risk prediction modeling
Stefan Konigorski1  Jessica L. Rohmann2  Tobias Kurth2  Marco Piccininni2 
[1] Digital Health & Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering;Institute of Public Health, Charité - Universitätsmedizin Berlin;
关键词: Causality;    Clinical risk prediction;    Prediction models;    Markov blanket;    Directed acyclic graph;    Transportability;   
DOI  :  10.1186/s12874-020-01058-z
来源: DOAJ
【 摘 要 】

Abstract Background In epidemiology, causal inference and prediction modeling methodologies have been historically distinct. Directed Acyclic Graphs (DAGs) are used to model a priori causal assumptions and inform variable selection strategies for causal questions. Although tools originally designed for prediction are finding applications in causal inference, the counterpart has remained largely unexplored. The aim of this theoretical and simulation-based study is to assess the potential benefit of using DAGs in clinical risk prediction modeling. Methods We explore how incorporating knowledge about the underlying causal structure can provide insights about the transportability of diagnostic clinical risk prediction models to different settings. We further probe whether causal knowledge can be used to improve predictor selection in clinical risk prediction models. Results A single-predictor model in the causal direction is likely to have better transportability than one in the anticausal direction in some scenarios. We empirically show that the Markov Blanket, the set of variables including the parents, children, and parents of the children of the outcome node in a DAG, is the optimal set of predictors for that outcome. Conclusions Our findings provide a theoretical basis for the intuition that a diagnostic clinical risk prediction model including causes as predictors is likely to be more transportable. Furthermore, using DAGs to identify Markov Blanket variables may be a useful, efficient strategy to select predictors in clinical risk prediction models if strong knowledge of the underlying causal structure exists or can be learned.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次