期刊论文详细信息
BMC Genomics
Comparative chloroplast genome analysis of Impatiens species (Balsaminaceae) in the karst area of China: insights into genome evolution and phylogenomic implications
Chao Luo1  Wulue Huang1  Yang Li1  Meijuan Huang1  Bo Yan1  Xinyi Li1  Yonghui Wen1  Haiquan Huang1  Qiong Wang1  Huseyin Yer2  Huayu Sun2 
[1]College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture(State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University
[2]Department of Landscape Architecture and Plant Science, University of Connecticut
关键词: Impatiens;    Balsaminaceae;    Chloroplast genome;    Comparative analysis;    Phylogenetic relationship;   
DOI  :  10.1186/s12864-021-07807-8
来源: DOAJ
【 摘 要 】
Abstract Background Impatiens L. is a genus of complex taxonomy that belongs to the family Balsaminaceae (Ericales) and contains approximately 1000 species. The genus is well known for its economic, medicinal, ornamental, and horticultural value. However, knowledge about its germplasm identification, molecular phylogeny, and chloroplast genomics is limited, and taxonomic uncertainties still exist due to overlapping morphological features and insufficient genomic resources. Results We sequenced the chloroplast genomes of six different species (Impatiens chlorosepala, Impatiens fanjingshanica, Impatiens guizhouensis, Impatiens linearisepala, Impatiens loulanensis, and Impatiens stenosepala) in the karst area of China and compared them with those of six previously published Balsaminaceae species. We contrasted genomic features and repeat sequences, assessed sequence divergence and constructed phylogenetic relationships. Except for those of I. alpicola, I. pritzelii and I. glandulifera, the complete chloroplast genomes ranging in size from 151,366 bp (I. alpicola) to 154,189 bp (Hydrocera triflora) encoded 115 distinct genes [81 protein-coding, 30 transfer RNA (tRNA), and 4 ribosomal RNA (rRNA) genes]. Moreover, the characteristics of the long repeat sequences and simple sequence repeats (SSRs) were determined. psbK-psbI, trnT-GGU-psbD, rpl36-rps8, rpoB-trnC-GCA, trnK-UUU-rps16, trnQ-UUG, trnP-UGG-psaJ, trnT-UGU-trnL-UAA, and ycf4-cemA were identified as divergence hotspot regions and thus might be suitable for species identification and phylogenetic studies. Additionally, the phylogenetic relationships based on Maximum likelihood (ML) and Bayesian inference (BI) of the whole chloroplast genomes showed that the chloroplast genome structure of I. guizhouensis represents the ancestral state of the Balsaminaceae family. Conclusion Our study provided detailed information about nucleotide diversity hotspots and the types of repeats, which can be used to develop molecular markers applicable to Balsaminaceae species. We also reconstructed and analyzed the relationships of some Impatiens species and assessed their taxonomic statuses based on the complete chloroplast genomes. Together, the findings of the current study might provide valuable genomic resources for systematic evolution of the Balsaminaceae species.
【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次