Polymers | |
Comparative Study of the Durability Behaviors of Epoxy- and Polyurethane-Based CFRP Plates Subjected to the Combined Effects of Sustained Bending and Water/Seawater Immersion | |
Guijun Xian1  Hui Li1  Bin Hong1  | |
[1] Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, 73 Huanghe Road, Nangang District, Harbin 150090, China; | |
关键词: epoxy resin; polyurethane; CFRP plates; water; seawater; bending strain; water uptake; in-plane shear strength; tensile properties; | |
DOI : 10.3390/polym9110603 | |
来源: DOAJ |
【 摘 要 】
In many applications, carbon fiber reinforced polymer (CFRP) composite materials suffer from the combined effects of sustained bending and immersion. In the present study, pultruded epoxy- and polyurethane (PU)-based CFRP plates were studied for their long-term performances, subjected to the combined effects of water/seawater immersion and sustained bending (0%, 30%, and 58% of the ultimate strain). The water uptake and the evolution of the mechanical properties were investigated. In addition, the service lives of the CFRPs were predicted using the Arrhenius method. Generally, the sustained bending led to a decrease in the water uptake, and reduced the mechanical properties. A diffusion model, dividing the cross-section of CFRPs into the “less resin area” and “rich resin area”, was proposed to elucidate the variation of water uptake and mechanical properties. Compared to epoxy-based CFRPs, although PU-based CFRPs possessed a significantly higher water uptake, they exhibited better long-term performances in terms of mechanical properties.
【 授权许可】
Unknown