| International Journal of Molecular Sciences | |
| Influence of Parathyroid Hormone-Loaded PLGA Nanoparticles in Porous Scaffolds for Bone Regeneration | |
| Gianluca Ciardelli1  Chiara Tonda-Turo1  Vijay Kumar Nandagiri1  Jacqueline Daly2  Piergiorgio Gentile3  Zebunnissa Ramtoola4  Ritesh Pabari4  | |
| [1] Department of Mechanical and Aerospace Engineering, Politecnico di Torino,Turin 10129, Italy;Division of Biology, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland;School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; | |
| 关键词: bone tissue; nanoparticles; parathyroid hormone; poly(lactide-co-glycolide); scaffolds; | |
| DOI : 10.3390/ijms160920492 | |
| 来源: DOAJ | |
【 摘 要 】
Biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles, containing human parathyroid hormone (PTH (1–34)), prepared by a modified double emulsion-solvent diffusion-evaporation method, were incorporated in porous freeze-dried chitosan-gelatin (CH-G) scaffolds. The PTH-loaded nanoparticles (NPTH) were characterised in terms of morphology, size, protein loading, release kinetics and in vitro assessment of biological activity of released PTH and cytocompatibility studies against clonal human osteoblast (hFOB) cells. Structural integrity of incorporated and released PTH from nanoparticles was found to be intact by using Tris-tricine SDS-PAGE. In vitro PTH release kinetics from PLGA nanoparticles were characterised by a burst release followed by a slow release phase for 3–4 weeks. The released PTH was biologically active as evidenced by the stimulated release of cyclic AMP from hFOB cells as well as increased mineralisation studies. in vitro and cell studies demonstrated that the PTH bioactivity was maintained duringthe fabrication of PLGA nanoparticles and upon release. Finally, a content of 33.3% w/w NPTHs was incorporated in CH-G scaffolds, showing an intermittent release during the first 10 days and, followed by a controlled release over 28 days of observation time. The increased expression of Alkaline Phosphatase levels on hFOB cells further confirmed the activity of intermittently released PTH from scaffolds.
【 授权许可】
Unknown