期刊论文详细信息
IEEE Access
Implementation of Nonlinear Adaptive U-Model Control Synthesis Using a Robot Operating System for an Unmanned Underwater Vehicle
Ubaid M. Al-Saggaf1  Nur Afande Ali Hussain2  Syed Saad Azhar Ali2  Patryk Cieslak3  Pere Ridao3 
[1] Center of Excellence in Intelligent Engineering Systems, King Abdulaziz University, Jeddah, Saudi Arabia;Department of Electrical and Electronic Engineering, Center for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia;Girona Underwater Vision and Robotics, University of Girona, Girona, Spain;
关键词: Adaptive control;    nonlinear;    UUV;    underactuated;    ROS;   
DOI  :  10.1109/ACCESS.2020.3037122
来源: DOAJ
【 摘 要 】

This paper presents the development of unmanned marine robotic control modelling and control synthesis using a coupled multivariable underactuated nonlinear adaptive U-model approach. The proposed controller was developed using thru an open source robot operating system (ROS) platform. The new adaptive coupled U-model based internal model control (IMC) node was successfully developed and tested. The proposed controller demonstrated the simplicity of the control synthesis process and the implementation of the mathematical algorithm in real-time. The controller was compared with the proven existing GIRONA 500 UUV for real-time performance. The ROS environment provides fast and reliable controller design and development compared to conventional software architecture. Simulation and real-time experiment were conducted using ROS via the GIRONA 500 UUV platform and compared with a PID mission controller. A new ROS node of nonlinear adaptive U-model based IMC was developed using ROS. The results showed good control signal convergence and tracking performance between the plant or system model with the proposed method.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次