期刊论文详细信息
Sustainability
Green Nanoparticle-Aided Biosorption of Nickel Ions Using Four Dry Residual Biomasses: A Comparative Study
Adriana Herrera-Barros1  Ángel Darío González-Delgado1  Candelaria Tejada-Tovar2 
[1] Chemical Engineering Department, Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia;Chemical Engineering Department, Process Design and Biomass Utilization Research Group (IDAB), Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia;
关键词: adsorption;    heavy metals;    biomass;    nanoparticles;   
DOI  :  10.3390/su14127250
来源: DOAJ
【 摘 要 】

The green synthesis of titanium dioxide nanoparticles was performed using the sol-gel method for their use in the modification of several agricultural biomasses (orange, lemon, cassava and yam peels) to evaluate the enhancement of adsorption capacity. To this end, different particle sizes (0.355, 0.5 and 1.0 mm) and initial solution pHs (2, 4 and 6) were assessed to identify the optimum conditions for further experimentation with the selected lignocellulosic materials. The defined conditions reporting the highest removal yields were used to perform adsorption experiments for chemically modified biosorbents. The biomaterials were characterized via elemental and bromatological analysis in order to quantify their composition. After the incorporation of TiO2 nanoparticles, the resulting biosorbents were characterized via FT-IR and SEM techniques. The results revealed that the pH solution significantly affects the nickel ion uptake, reaching the best performance at pH = 6 for all biomasses. Unmodified biomasses shown adsorption capacities between 18–20 mg/g. For chemically modified with TiO2 orange peels and yam peels biomass, the increase in adsorption capacities was 21.3 and 18.01 mg/g, respectively. For cassava and lemon peels chemically modified, it was found the increasing in adsorption capacities with values of 21.3 and 18.01 mg/g, respectively, which suggested that the incorporation of nanoparticles enhances adsorption capacities.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次