期刊论文详细信息
Modern Stochastics: Theory and Applications | |
Random convolution of inhomogeneous distributions with -exponential tail | |
Svetlana Danilenko1  Simona Paškauskaitė2  Jonas Šiaulys2  | |
[1] Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio al. 11, Vilnius LT-10223, Lithuania;Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania; | |
关键词:
Heavy tail;
exponential tail;
|
|
DOI : 10.15559/16-VMSTA52 | |
来源: DOAJ |
【 摘 要 】
Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables (not necessarily identically distributed), and η be a counting random variable independent of this sequence. We obtain sufficient conditions on $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of $\mathcal{O}$-exponential distributions.
【 授权许可】
Unknown