期刊论文详细信息
Materials
Recent Advances in High-Throughput Nanomaterial Manufacturing for Hybrid Flexible Bioelectronics
Jihoon Kim1  Nathan Zavanelli1  Woon-Hong Yeo1 
[1] Center for Human-Centric Interfaces, George W. Woodruff School of Mechanical Engineering, Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA;
关键词: nanomanufacturing;    high-throughput method;    material printing;    flexible bioelectronics;   
DOI  :  10.3390/ma14112973
来源: DOAJ
【 摘 要 】

Hybrid flexible bioelectronic systems refer to integrated soft biosensing platforms with tremendous clinical impact. In this new paradigm, electrical systems can stretch and deform with the skin while previously hidden physiological signals can be continuously recorded. However, hybrid flexible bioelectronics will not receive wide clinical adoption until these systems can be manufactured at industrial scales cost-effectively. Therefore, new manufacturing approaches must be discovered and studied under the same innovative spirit that led to the adoption of novel materials and soft structures. Recent works have taken mature manufacturing approaches from the graphics industry, such as gravure, flexography, screen, and inkjet printing, and applied them to fully printed bioelectronics. These applications require the cohesive study of many disparate parts. For instance, nanomaterials with optimal properties for each specific application must be dispersed in printable inks with rheology suited to each printing method. This review summarizes recent advances in printing technologies, key nanomaterials, and applications of the manufactured hybrid bioelectronics. We also discuss the existing challenges of the available nanomanufacturing methods and the areas that need immediate technological improvements.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次