期刊论文详细信息
Information
A Situation Assessment Method with an Improved Fuzzy Deep Neural Network for Multiple UAVs
Xuesi Li1  Xianchen Shi1  Lin Zhang1  Yian Zhu1 
[1] School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China;
关键词: Situation assessment;    fuzzy deep neural network;    multiple UAVs;    adaptive momentum;    Elastic SGD;   
DOI  :  10.3390/info11040194
来源: DOAJ
【 摘 要 】

To improve the intelligence and accuracy of the Situation Assessment (SA) in complex scenes, this work develops an improved fuzzy deep neural network approach to the situation assessment for multiple Unmanned Aerial Vehicle(UAV)s. Firstly, this work normalizes the scene data based on time series and use the normalized data as the input for an improved fuzzy deep neural network. Secondly, adaptive momentum and Elastic SGD (Elastic Stochastic Gradient Descent) are introduced into the training process of the neural network, to improve the learning performance. Lastly, in the real-time situation assessment task for multiple UAVs, conventional methods often bring inaccurate results for the situation assessment because these methods don’t consider the fuzziness of task situations. This work uses an improved fuzzy deep neural network to calculate the results of situation assessment and normalizes these results. Then, the degree of trust of the current result, relative to each situation label, is calculated with the normalized results using fuzzy logic. Simulation results show that the proposed method outperforms competitors.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次