BioResources | |
LAYER STRUCTURES FORMED BY SILICA NANOPARTICLES AND CELLULOSE NANOFIBRILS WITH CATIONIC POLYACRYLAMIDE (C-PAM) ON CELLULOSE SURFACE AND THEIR INFLUENCE ON INTERACTIONS | |
关键词: Adsorption; Surface force; Nanoparticle; Cellulose nanofibril; Polyelectrolyte; Multilayer; AFM; QCM-D; | |
DOI : | |
来源: DOAJ |
【 摘 要 】
A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the adsorption of the layer formed by silica nanoparticles (SNP) and cellulose nanofibrils (NFC) together with cationic polyacrylamide (C-PAM) on cellulose surface, accompanied by use of atomic force microscope (AFM) to study the interactions between cellulose surfaces. The purpose was to understand the multilayer build-up compared to complex structure adsorption. The layer thickness and consequently also the repulsion between surfaces increased with each addition step during layer formation in the SNP-C-PAM systems, whereas the second addition of C-PAM decreased the repulsion in the case of NFC-C-PAM multilayer formation. An exceptionally high repulsion between surfaces was observed when nanofibrillar cellulose was added. This together with the extremely high dissipation values recorded with QCM-D indicated that nanofibrillar cellulose formed a loose and thick layer containing a lot of water. The multilayer systems formed fully and uniformly covered the surfaces. Silica nanoparticles were able to penetrate inside the loose C-PAM structure due to their small size. In contrast, NFC formed individual layers between C-PAM layers. The complex of C-PAM and SNP formed only a partly covered surface, leading to long-ranged pull-off force. This might explain the good flocculation properties reported for polyelectrolyte-nanoparticle systems.
【 授权许可】
Unknown