期刊论文详细信息
NeuroImage
Stimulation artifact source separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS)
Surjo R. Soekadar1  David Haslacher2  Khaled Nasr2  Christoph Braun3  Stephen E. Robinson4 
[1] CIMeC, Center of Mind/Brain Sciences, University of Trento, Italy;Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité – University Medicine Berlin, Berlin, Germany;MEG Center, University of Tübingen, Germany;National Institute of Mental Health (NIMH), MEG Core Facility, Bethesda, USA;
关键词: Brain oscillations;    Single-trial;    Transcranial alternating current stimulation (tACS);    Stimulation artifact;    Electroencephalography (EEG);   
DOI  :  
来源: DOAJ
【 摘 要 】

Brain oscillations, e.g. measured by electro- or magnetoencephalography (EEG/MEG), are causally linked to brain functions that are fundamental for perception, cognition and learning. Recent advances in neurotechnology provide means to non-invasively target these oscillations using frequency-tuned amplitude-modulated transcranial alternating current stimulation (AM-tACS). However, online adaptation of stimulation parameters to ongoing brain oscillations remains an unsolved problem due to stimulation artifacts that impede such adaptation, particularly at the target frequency. Here, we introduce a real-time compatible artifact rejection algorithm (Stimulation Artifact Source Separation, SASS) that overcomes this limitation. SASS is a spatial filter (linear projection) removing EEG signal components that are maximally different in the presence versus absence of stimulation. This enables the reliable removal of stimulation-specific signal components, while leaving physiological signal components unaffected. For validation of SASS, we evoked brain activity with known phase and amplitude using 10 Hz visual flickers across 7 healthy human volunteers. 64-channel EEG was recorded during and in absence of 10 Hz AM-tACS targeting the visual cortex. Phase differences between AM-tACS and the visual stimuli were randomized, so that steady-state visually evoked potentials (SSVEPs) were phase-locked to the visual stimuli but not to the AM-tACS signal. For validation, distributions of single-trial amplitude and phase of EEG signals recorded during and in absence of AM-tACS were compared for each participant. When no artifact rejection method was applied, AM-tACS stimulation artifacts impeded assessment of single-trial SSVEP amplitude and phase. Using SASS, amplitude and phase of single trials recorded during and in absence of AM-tACS were comparable. These results indicate that SASS can be used to establish adaptive (closed-loop) AM-tACS, a potentially powerful tool to target various brain functions, and to investigate how AM-tACS interacts with electric brain oscillations.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次