期刊论文详细信息
Earth's Future
A Decreasing Trend of Nitrous Oxide Emissions From California Cropland From 2000 to 2015
William Salas1  Pete Ingraham1  Jessica G. Charrier‐Klobas2  Lei Guo2  Changsheng Li3  Jia Deng3  Steve Frolking3 
[1] Applied GeoSolutions LLC Durham NH USA;California Air Resources Board Sacramento CA USA;Earth Systems Research Center Institute for the Study of Earth, Oceans and Space University of New Hampshire Durham NH USA;
关键词: direct N2O emission;    spatial‐temporal variations;    diverse agricultural ecosystems;    California;    biogeochemical modeling;   
DOI  :  10.1029/2021EF002526
来源: DOAJ
【 摘 要 】

Abstract Mitigation of greenhouse gas emissions from agriculture requires an understanding of spatial‐temporal dynamics of nitrous oxide (N2O) emissions. Process‐based models can quantify N2O emissions from agricultural soils but have rarely been applied to regions with highly diverse agriculture. In this study, a process‐based biogeochemical model, DeNitrification‐DeComposition (DNDC), was applied to quantify spatial‐temporal dynamics of direct N2O emissions from California cropland employing a wide range of cropping systems. DNDC simulated direct N2O emissions from nitrogen (N) inputs through applications of synthetic fertilizers and crop residues during 2000–2015 by linking the model with a spatial‐temporal differentiated database containing data on weather, crop areas, soil properties, and management. Simulated direct N2O emissions ranged from 3,830 to 7,875 tonnes N2O‐N yr−1, representing 0.73%–1.21% of the N inputs. N2O emission rates were higher for hay and field crops and lower for orchard and vineyard. State cropland total N2O emissions showed a decreasing trend primarily driven by reductions of cropland area and N inputs, the trend toward growing more orchard, and changes in irrigation. Annual direct N2O emissions declined by 47% from 2000 to 2015. Simulations showed N2O emission variations could be explained not only by cropland area and N fertilizer inputs but also climate, soil properties, and management besides N fertilization. The detailed spatial‐temporal emission dynamics and driving factors provide knowledge toward effective N2O mitigation and highlight the importance of coupling process‐based models with high‐resolution data for characterizing the spatial‐temporal variability of N2O emissions in regions with diverse croplands.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:4次