期刊论文详细信息
Antioxidants
Biological Effects of Scattered Versus Scanned Proton Beams on Normal Tissues in Total Body Irradiated Mice: Survival, Genotoxicity, Oxidative Stress and Inflammation
Alexandre Leduc1  Samia Chaouni1  Carine Laurent1  Dinu Stefan1  Jean-Louis Habrand1  François Sichel1  Frédérique Megnin-Chanet2  Ludovic De Marzi3  Frédéric Pouzoulet4 
[1] Cancer Centre François Baclesse, Normandy University, UNICAEN, UNIROUEN, ABTE-EA4651, 14076 Caen, France;INSERM U1196/CNRS UMR 9187, Institut Curie-Recherche, University Paris-Saclay, 91405 Orsay, France;Radiation Oncology Department, Proton Therapy Centre, Centre University, Institut Curie, PSL Research University, 91898 Orsay, France;Translational Research Department, Experimental Radiotherapy Platform Institut Curie, PSL Research University, 91401 Orsay, France;
关键词: proton therapy;    double scattering;    pencil beam scanning;    side effects;    healthy tissues;    genotoxicity;   
DOI  :  10.3390/antiox9121170
来源: DOAJ
【 摘 要 】

Side effects of proton therapy are poorly studied. Moreover, the differences in the method of dose delivery on normal tissues are not taken into account when proton beams are scanned instead of being scattered. We proposed here to study the effects of both modalities of proton beam delivery on blood; skin; lung and heart in a murine model. In that purpose; C57BL/6 mice were total body irradiated by 190.6 MeV proton beams either by Double Scattering (DS) or by Pencil Beam Scanning (PBS) in the plateau phase before the Bragg Peak. Mouse survival was evaluated. Blood and organs were removed three months after irradiation. Biomarkers of genotoxicity; oxidative stress and inflammation were measured. Proton irradiation was shown to increase lymphocyte micronucleus frequency; lung superoxide dismutase activity; erythrocyte and skin glutathione peroxidase activity; erythrocyte catalase activity; lung; heart and skin oxidized glutathione level; erythrocyte and lung lipid peroxidation and erythrocyte protein carbonylation even 3 months post-irradiation. When comparing both methods of proton beam delivery; mouse survival was not different. However, PBS significantly increased lymphocyte micronucleus frequency; erythrocyte glutathione peroxidase activity and heart oxidized glutathione level compared to DS. These results point out the necessity to take into account the way of delivering dose in PT as it could influence late side effects.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次