Molecules | |
Potential Immunogenic Activity of Computationally Designed mRNA- and Peptide-Based Prophylactic Vaccines against MERS, SARS-CoV, and SARS-CoV-2: A Reverse Vaccinology Approach | |
Taimoor Khan1  Abbas Khan1  Dong-Qing Wei1  Khalid Muhammad2  Yasir Waheed3  Muzammil Hasan Najmi3  Jawad Khaliq Ansari3  | |
[1] Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;Department of Biology, College of Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates;Foundation University Medical College, Foundation University Islamabad, Islamabad 46000, Pakistan; | |
关键词: MERS-CoV; SARS-CoV; SARS-CoV-2; prophylactic vaccine; epitopes; | |
DOI : 10.3390/molecules27072375 | |
来源: DOAJ |
【 摘 要 】
The continued emergence of human coronaviruses (hCoVs) in the last few decades has posed an alarming situation and requires advanced cross-protective strategies against these pandemic viruses. Among these, Middle East Respiratory Syndrome coronavirus (MERS-CoV), Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), and Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2) have been highly associated with lethality in humans. Despite the challenges posed by these viruses, it is imperative to develop effective antiviral therapeutics and vaccines for these human-infecting viruses. The proteomic similarity between the receptor-binding domains (RBDs) among the three viral species offers a potential target for advanced cross-protective vaccine designs. In this study, putative immunogenic epitopes including Cytotoxic T Lymphocytes (CTLs), Helper T Lymphocytes (HTLs), and Beta-cells (B-cells) were predicted for each RBD-containing region of the three highly pathogenic hCoVs. This was followed by the structural organization of peptide- and mRNA-based prophylactic vaccine designs. The validated 3D structures of these epitope-based vaccine designs were subjected to molecular docking with human TLR4. Furthermore, the CTL and HTL epitopes were processed for binding with respective human Lymphocytes Antigens (HLAs). In silico cloning designs were obtained for the prophylactic vaccine designs and may be useful in further experimental designs. Additionally, the epitope-based vaccine designs were evaluated for immunogenic activity through immune simulation. Further studies may clarify the safety and efficacy of these prophylactic vaccine designs through experimental testing against these human-pathogenic coronaviruses.
【 授权许可】
Unknown