Applied Sciences | 卷:10 |
Screen-Cam Robust Image Watermarking With Feature-Based Synchronization | |
Changqing Zhu1  Qifei Zhou1  Na Ren1  Weitong Chen1  Tapio Seppänen2  Anja Keskinarkaus2  | |
[1] Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; | |
[2] Physiological Signal Analysis Team, Center for Machine Vision and Signal Analysis, University of Oulu, 90014 Oulu, Finland; | |
关键词: screen-cam process; local square feature region; synchronization; DFT; robust watermarking; | |
DOI : 10.3390/app10217494 | |
来源: DOAJ |
【 摘 要 】
The screen-cam process, which is taking pictures of the content displayed on a screen with mobile phones or cameras, is one of the main ways that image information is leaked. However, traditional image watermarking methods are not resilient to screen-cam processes with severe distortion. In this paper, a screen-cam robust watermarking scheme with a feature-based synchronization method is proposed. First, the distortions caused by the screen-cam process are investigated. These distortions can be summarized into the five categories of linear distortion, gamma tweaking, geometric distortion, noise attack, and low-pass filtering attack. Then, a local square feature region (LSFR) construction method based on a Gaussian function, modified Harris–Laplace detector, and speeded-up robust feature (SURF) orientation descriptor is developed for watermark synchronization. Next, the message is repeatedly embedded in each selected LSFR by an improved embedding algorithm, which employs a non-rotating embedding method and a preprocessing method, to modulate the discrete Fourier transform (DFT) coefficients. In the process of watermark detection, we fully utilize the captured information and extract the message based on a local statistical feature. Finally, the experimental results are presented to illustrate the effectiveness of the method against common attacks and screen-cam attacks. Compared to the previous schemes, our scheme has not only good robustness against screen-cam attack, but is also effective against screen-cam with additional common desynchronization attacks.
【 授权许可】
Unknown