期刊论文详细信息
Infrastructures 卷:6
Experimental and Numerical Studies on Thermally-Induced Slip Ratcheting on a Slope
Jingtao Zhang1  Seunghee Kim1  Abdallah Sweidan2  Ethan Druszkowski3  Sihyun Kim4 
[1] Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA;
[2] Illinois Department of Transportation, Springfield, IL 61602, USA;
[3] Strand Associates, Joliet, IL 60431, USA;
[4] Terracon Consultants Inc., Indianapolis, IN 46214, USA;
关键词: slip ratcheting;    slip accumulation;    temperature-induced displacement;    repetitive temperature cycle;    experimental study;    numerical simulation;   
DOI  :  10.3390/infrastructures6010005
来源: DOAJ
【 摘 要 】

Mild temperature fluctuation of a material sitting on a slope may only cause a small slip, but a large number of the repeated temperature changes can amplify the magnitude of the overall slip and eventually bring an issue of structural instability. The slip accumulation starts from the minor magnitude and reaches the extensive level called “slip ratcheting”. Experimental evidence for such thermally-induced slip ratcheting is first provided in this work. It is implemented with an acryl sheet placed on an inclined wood with a mild angle; it is found that the temperature fluctuation of the acryl sheet causes the sheet to slide down gradually without any additional loading. The numerical model is then attempted to emulate the major findings of the experiments. From the simulation work, the location of a neutral point is found when the acryl plate is heated, and another neutral point is observed when cooled down. The shift of the neutral point appears to be a major reason for the unrecovered slip after a temperature increase and decrease cycle. Finally, a parametric study using the numerical model is carried out to examine which parameters play a major role in the development of residual slips.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次