期刊论文详细信息
Opuscula Mathematica 卷:26
Application of Green's operator to quadratic variational problems
Vadim Z. Tsalyuk1  Nikolay V. Azbelev2 
[1] Kuban State University, Krasnodar, Russia;
[2] Perm State Technical University, Perm, Russia;
关键词: quadratic variational problem;    Sobolev space;    boundary value problem;    Hilbert space;    Green's operator;    Fredholm integral operator;    spectrum;   
DOI  :  
来源: DOAJ
【 摘 要 】

We use Green's function of a suitable boundary value problem to convert the variational problem with quadratic functional and linear constraints to the equivalent unconstrained extremal problem in some subspace of the space \(L_2\) of quadratically summable functions. We get the necessary and sufficient criterion for unique solvability of the variational problem in terms of the spectrum of some integral Hilbert-Schmidt operator in \(L_2\) with symmetric kernel. The numerical technique is proposed to estimate this criterion. The results are demonstrated on examples: 1) a variational problem with deviating argument, and 2) the problem of the critical force for the vertical pillar with additional support point (the qualities of the pillar may vary discontinuously along the pillar's axis).

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次