期刊论文详细信息
Journal of Traffic and Transportation Engineering (English ed. Online) 卷:3
Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements
Wei Cao1  Y. Richard Kim2  Amirhossein Norouzi2 
[1] Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA;
[2] Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA;
关键词: Perpetual pavement;    Fatigue cracking;    Continuum damage theory;    Failure criterion;    LVECD;   
DOI  :  10.1016/j.jtte.2016.03.002
来源: DOAJ
【 摘 要 】

For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD) finite element software package. In this framework, asphalt concrete was treated in the context of linear viscoelastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15-year finite element structural simulation results for all the test sections indicate that fatigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be employed for perpetual pavement design.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次